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We study a generic one-dimensional atomistic model of interface growth under random ballistic deposition
in the presence of a surface diffusion bias allowing for surface overhangs and bulk vacancies. We find that
various diffusion bias induced surface instabilities recently found in the solid-on-solid approximation of kinetic
growth are absent in the generic model with the usual statistically self-affine Kardar-Parisi-Zhang scaling
dominating the surface morphology. For strong biases and high temperatures, the growing surface resembles
the zero temperature ballistic growth without a diffusion bias. The growth front morphologies show intricate
flamelike nonlocal structures not typically present in self-affine surfaces. This indicates that the standard
coarse-grained single-variable description of the growing film by its local surface height coordinate misses an
important qualitative feature, namely, a novel flamelike roughening behavior along vertical faces of the growth
front. @S1063-651X~96!08511-X#

PACS number~s!: 05.40.1j, 82.20.Mj, 68.55.Jk

It has long been known@1# that an atom diffusing across a
terrace is affected by an additional energy barrier, or surface
diffusion bias, when crossing a step edge: an atom finds it
easier to hop to an in-plane kink site rather than an out-of-
plane kink. A number of recent studies@2–5# incorporating
this effect have demonstrated complex and interesting mor-
phological instabilities in nonvicinal interfaces growing un-
der conservative dynamics in the presence of an external
particle flux. These conserved models analyze the solid-on-
solid ~SOS! growth situation in which the crystal is free of
defects and has a continuum description@6# obeying the cur-
rent continuity equation]h/]t52¹• j1h. Here, j is a
model dependent surface current andh is a stochastic shot
~white! noise term modeling the spatiotemporal fluctuations
in the incident atomic beam. The surface profile at timet is
expressed as the single-valued functionh(x,t) giving the
coordinate of the highest atom above substrate sitex and
denoting the surface height fluctuation with respect to the
average heighth̄ at time t. The simplest possible instability
arises whenj52n2¹h with n2,0 @5#, although more com-
plex forms are possible and have also been studied@2#.

In general, both continuum and discrete SOS growth
models @2–4# in the presence of a diffusion bias lead to
morphological instabilities in contrast to the usual self-affine
dynamic scaling behavior traditionally associated with ki-
netic surface roughening. We report herein a study of a ge-
neric interface growth model@7# in 111 dimensions which
permits overhangs and defects to occur in the presence of a
diffusion bias, and is not restricted to the simplest SOS ap-
proximation. Evaporation from the growth front is neglected
in our work. We find that the generic model in the presence
of a surface diffusion bias does not exhibit the typical growth
instabilities, and in fact,h(x,t) crosses over to the asymp-
totically expected statistically scale invariant behaviorfaster

than it does in the absence of a diffusion bias. This result has
also been seen by Schimschak and Krug~SK! @8# recently in
a somewhat simplified variant of our full generic model. For
strong diffusion biases at finite temperatureT, the surface
appears to evolve quantitatively as does aT50 K model
lacking any diffusion bias. Additionally, the diffusion bias
leads to an unexpected and intricate flamelike growth front
with lateral roughening~i.e., roughening normal to direction
of growth! appearing along vertical faces. These highly non-
trivial features are ignored by a description of the film using
a single dynamical variableh(x,t). This is therefore an in-
teresting example of a situation where employing a single-
variable coarse-grained continuum description, typically suc-
cessful in theories of kinetic surface roughening, overlooks
an important aspect of the interfacial dynamics. Our work
and the recent work reported in Ref.@8# definitively establish
that various reported growth instabilities under a surface dif-
fusion bias are features of the SOS approximation and thus
can appear only when bulk defects and surface overhangs are
dynamically inactive during the growth process.

The generic model in the presence of defects such as va-
cancies and overhangs@7,8# is expected to asymptotically
obey the coarse-grained continuum equation proposed by
Kardar, Parisi, and Zhang~KPZ! @9#:

]h/]t5n2¹
2h1l~¹h!21h. ~1!

The KPZ equation is nonconservative due to the nonlinear
terml(¹h)2, which represents growth normal to the surface.
The KPZ equation displays statistical scale invariant behav-
ior, or equivalently, the KPZ interface is a self-affine object,
although a more complex SOS regime has been observed in
simulations prior to the crossover to the asymptotic KPZ
scaling @7,8#. Characterizing the interface by its width
W(L,t)5^@h(x,t)2h̄(t)#2&1/2, where we perform an en-
semble average and an average over theL substrate sites, one
can show thatW(L,t);tb for t!Lz andW(L,t);La when
t@Lz. For the one-dimensional interface we consider
(d51), the exact exponents of Eq.~1! are given by@9#:
b51/3,z53/2, anda5zb51/2.
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The KPZ equation is usually considered for the case
n2.0, so one can question how an2,0 linear instability, as
arising from a step-edge diffusion bias, might influence the
KPZ dynamic scaling behavior. The long wavelength behav-
ior in the presence of the instability isasymptoticallyex-
pected to remain in the KPZ universality because upon
renormalization the nonlinear coupling generates a positive
n2 which eventually overcomes the initial negative ‘‘bare’’
n2. Physically, the lateral growth inherent in the generic non-
conservative case will ultimately suppress incipient instabili-
ties through the creation of localized overhangs, rendering
the full multivalued nature of the interface invisible to the
single-valued functionh(x,t).

The KPZ equation withn2,0 is an important simplifica-
tion of the noisy Kuramoto-Shivashinsky~KS! equation, re-
cently analyzed by Cuerno and Lauritsen@10# in the context
of interface growth phenomena:

]h/]t5n2¹
2h2n4¹

4h1l~¹h!21h, ~2!

wheren2,0 andn4.0. We point out that the fourth order
termn4¹

4h represents to leading order the surface diffusion
of atoms to highly coordinated sites@6,13#. Without the noise
term (h50), Eq. ~2! is the standard KS equation of flame
front propagation and chemical turbulence@14#, while the
noisy version has previously been applied to ion sputtering
processes@10,11#. An anisotropic KS equation, with and
without noise, has also been studied in the context of growth
and erosion applications@12#. All these versions of the KS
equation asymptotically display KPZ universality ford51
@10–12,15#. The exact correspondence between the KPZ
equation and the noiseless KS equation is, in fact, quite non-
trivial and has been convincingly demonstrated only in
d51. The noiseless KS equation@h50 in Eq. ~2!# is a de-
terministic equation that at very late times manifests a form
of deterministic chaos which mimics the properties of white
noise@14,15#, and a direct derivation of Eq.~1! from the KS
equation in the hydrodynamic regime has recently been ac-
complished@16#. The asymptotic KPZ scaling of the KS
equation, however, appears only after an extremely long
non-KPZ transient associated with the linear, conservative
terms @15#. The corresponding crossover to the asymptotic
KPZ scaling in the noisy KS equation has not yet been in-
vestigated and whether there is a long-lived preasymptotic
transient in the noisy KS equation, similar to that of the
noiseless case, is not in general known. In the sputtering
models, for which the noisy KS equation has been proposed
as a coarse-grained continuum description, such a long tran-
sient to the asymptotic scaling has been suggested@11#. In a
growth model with solid-on-solid type deposition and
Arrhenius-activated hopping of only singly bonded atoms
that permits defect formation@8#, SK found no instability
and rather rapid development of KPZ asymptotics@8#. We
address the robustness of these results by analyzing the tran-
sient ~and experimentally relevant! crossover behavior in
various regimes of temperature and diffusion bias strength,
and utilizing the generic model which possesses several sig-
nificant differences from that of SK. In particular, we go
beyond the SOS approximation both for deposition and dif-
fusion, and our activated hopping process is not arbitrarily
limited to singly bonded atoms.

We study a one-dimensional Monte Carlo growth model
with random ballistic deposition and atomistic diffusion via
activated hopping which possesses the following properties:
vacancy and overhang formation (lÞ0) @7,8#, surface dif-
fusion (n4.0) @13#, an external atomic beam (hÞ0), and a
diffusion bias (n2,0) @5#. Based on these properties and the
usual coarse-graining procedure to go from a discrete model
to the continuum limit, our model can be qualitatively
mapped onto the noisy KS equation@17#, Eq. ~2!. Atoms
deposit one by one normally onto an initially flat~singular!
one-dimensional substrate at the rate of 1 layer/sec following
the rules of random ballistic deposition@7#. Periodic bound-
ary conditions are employed. Surface diffusion occurs sto-
chastically according to the local coordination dependent
Arrhenius ratesRn5(kT/h)e2En /kT. The activation energy
for the diffusion of an atom with bonds ton occupied nearest
neighbor ~NN! sites is En51.0eV1(0.3eV)n. Any atom
may be selected to diffuse at any time subject to these aver-
age rates. The diffusing atom randomly chooses a landing
site from the set of eight NN and next-NN sites which are
unoccupied, and all hops are successful when no diffusion
bias is present. However, a landing site is rejected unless it
provides at least one NN bond~see Fig. 1!, and the motion of
that atom must not leave behind a disconnected atom or pair
of atoms. Thus our simulation explicitly disallows the evapo-
ration of single particles or two particle clusters; frequently,
this logic also prevents clusters of three~or more! particles
from becoming disconnected. All hops which lead to a dis-
connectivity of the crystal require a doubly or triply bonded
atom to hop: at low temperatures, these events are rare while
at high temperatures the surface tends to be compact enough
so as to not generate configurations in danger of breaking
free. If a large atomic cluster breaks off, it diffuses so slowly
from the surface~being composed of many doubly and triply
bonded atoms and due to its large size! that it is certain to
rapidly reattach to the growth front. Hence, while not rigor-
ously forbidden, in the temperature regime of interest previ-
ous experience@7,18# has established that our algorithm
seems to eliminate evaporation for all practical purposes
from our simulations.

FIG. 1. For selected atoms~circles! on the surface, the possible
diffusional moves are indicated, together with a numberd which is
the decrease in next-nearest neighbors whend>1 andd50 other-
wise. The selected process overcomes the diffusion bias with prob-
ability pd.
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A step-edge diffusion bias is imposed upon this general
scheme~following Ref. @19#! such that the total rate of a
hopping process isR5pdRn . The parameterp5e2Es /kT

represents the hopping probability over the additional step-
edge diffusion barrier of sizeEs . If the number ofnext-
nearest neighbors is reduced by the hop, the exponentd
gives this decrement; if the number of next-NNs increases or
remains unchanged thend50 for that particular process~i.e.,
there is no diffusion bias andp51 for that situation! and
R reduces toRn . A random number decides if the barrier is
surmounted, but upon failure the attempt is aborted and the
atom remains in the initial position. Figure 1 demonstrates
all possible diffusion moves for some selected atoms, along
with the value ofd associated with each hop. This imple-
mentation, which we have called a ‘‘reflection barrier’’@4#,
generally makes it difficult for atoms to reach the step edge.
As a result, configurations conducive to disconnectivity are
discouraged and we have observed no free detached clusters
in our simulations. Using the step-edge barrier model of SK
in our simulations instead of the reflection barrier, however,
does lead to significant disconnectivity problems being ob-
served due to the formation of straight chains of atoms fa-
vored by that rule@20#. The different ways in which the
surface diffusion barrier enters growth simulations is a sig-
nificant difference between our work and that in Ref.@8#.

In Fig. 2 we show the evolution ofW and of the rms
surface slopeG(t)5^@h(x,t)2h(x21,t)2#&1/2 for T5600 K
with no barrier (p51.0) and for progressively stronger dif-
fusion biases ofp50.5,0.1, and 1024. Without a bias the
asymptotic KPZ scaling regime (t.100), most easily iden-
tified by the saturation ofG(t), is preceded by a SOS tran-
sient (t,20) and a defect formation regime (t520–100)
@7#. Rather than extending the SOS transient associated with
the conservative terms in Eq.~2!, with increasing bias~de-
creasingp) the SOS transient in fact completely disappears
with defect formation being the only precursor to the asymp-
totic KPZ scaling. We contrast this with the very long con-
servative transient in the noise-free KS equation@15#. At
fixedT Fig. 2 shows that bothW andG possess very notable
changes withp within the KPZ scaling regime. This is most

clearly seen in the inset where the earlier saturation of
G(t) signifies an earlier onset of KPZ scaling with increas-
ing diffusion bias. A reduction in the crossover scale for
KPZ scaling was noted by SK in a gentler model using a
SOS deposition rule and for smaller barriers ofp>0.4 @8#,
while it is explicitly observed here out to a very strong dif-
fusion bias ofp50.0001 where one might naively expect
instabilities to be strong. Based on these studies and a com-
parison to the noise-free KS equation, we conclude that the
explicit shot noise present in Eq.~2! (hÞ0) can overwhelm
pre-KPZ transients associated with the linear growth terms,
and cause the asymptotic KPZ scaling to emerge much more
readily than in the original noiseless KS equation itself.

Figure 3 shows growth simulation results under a strong
bias ofp51024 atT5500, 550, 600, and 625 K, along with
theT50 K diffusionless curve for reference. Fort>20 both
G andW display the same quantitative behavior for the full
range of temperatures~finite size effects inW for t.1000
arise due to theL dependence of the saturated width!. Not
only do the absolute values ofG andW exhibit temperature
independence once the asymptotic KPZ regime is attained,
but the slope of the width curve also remains roughly un-
changed, indicating an essentially temperature independent
growth exponent (b50.29560.015). The onlyT depen-
dence arises in how defects form and propagate in the early
time regime (t,20). Unlike in the zero barrier case
(p51), whereW andG have temperature dependent values
@7#, under a strong diffusion bias nonconservative growth
appears to lose all temperature dependence within the KPZ
regime and behaves quantitatively as it does atT50 K. In-
terestingly then, a strong diffusion bias, in fact, tends to lead
to simplergrowth in that temperature effects in the surface
height functionh(x,t), arising from thermally activated hop-
ping at the growth front, appear to be suppressed in the
asymptotic regime. Thus finite temperature ballistic growth
under a strong diffusion bias is surprisingly similar to zero
temperature ballistic growth without any diffusion.

Our results as well as those in SK clearly establish that
the various growth instabilities obtained in the SOS model in
the presence of a diffusion bias are specific features of the

FIG. 2. The width and average slope~inset! for T5600 K, for
diffusion biasesp51.0,0.5,0.1,1024 ~bottom to top! with L
51000; average of 15 runs. The slope of the upper fit line (p
51024) is b50.29460.005, and for the lower line (p51.0),
b50.30460.10. The saturation ofG confirms KPZ scaling at a time
which decreases withp.

FIG. 3. The average slope and width~inset! for p51024 at
T5625(L5500; five runs!, 600(L51000;15runs),550 (L5600;
ten runs!, and 500 (L5600;ten runs) K and forT50 K
(L55000;20 runs) from bottom to top. The growth at eachT be-
haves as ifT50 K after defects are formed.

54 4757FAR FROM EQUILIBRIUM NONCONSERVED GROWTH . . .



SOS approximation, which are rapidly renormalized away by
vacancies and overhangs in the generic model. Except for the
details of defect formation, the parameterp proves inconse-
quential in determining the surface dynamics from this view-
point, i.e., one finds statistically scale invariant dynamic
~KPZ! scaling for all values ofp. This simple picture, based
on a coarse-grained single-valued height variable descrip-
tion, misses the full role of the diffusion bias in determining
a novel pattern formation behavior in nonconservative
growth, however. The top panel of Fig. 4 shows growth at
T5625 K with no bias and the single-valued functionh is
adequate in representing the interface. For a strong diffusion
bias ofp51024 ~lower panel!, h is a poor representation of
the richness of the growth morphology, which now exhibits
many flamelike undulations on vertical columnar portions of
the surface. This type of pattern formation due to a surface
diffusion bias in ballistic growth can be considered a form of
nonlocal kinetic roughening which is not amenable to a
single-variable description. The nonconservative nature of
the growth rules in our generic model, especially at highT
and for strong biases, allows atoms to roughen the flat verti-
cal segments seen forp51.0 into the curved features for
small p. A strong barrier in our model prevents the fastest
atoms from reaching edge sites and thereby turning corners,
and therefore an atom in columnx can be readily trapped on

a vertical surface, diffusing along it until encountering other
atoms with the same substrate coordinatex. Such processes
build up the ‘‘lateral’’ roughness which collectively pro-
duces the flamelike character in thep51024 case. This im-
plies a novel nonlocal instability of the flat vertical columns
in the presence of the diffusion bias. The flamelike undula-
tions also lead to large tilted voids in the bulk rather than the
extremely narrow vertical voids seen@7,8# for the no-bias
p51.0 case. In Fig. 5 we show a morphology grown at
p51024 andT5600 K. A similar flamelike morphology is
apparent, and we conclude that this nonlocal flamelike
roughening pattern along vertical faces of the surface can
arise whenever the ‘‘reflection barrier’’ type diffusion bias
@4# is strong in a nonconservative growth model. For the
highest barrier in the SK model (p;0.05 in our language! a
more angular set of peaks emerges@8#, consistent with their
use of a barrier akin to the ‘‘edge barrier’’ which produced
such morphologies even in a purely SOS model@4#. The
details of atomic motion near a step edge thus appear to be
quite important in determining the full morphology of non-
conservatively grown films. While the ‘‘reflection barrier’’
type diffusion bias produces the flamelike pattern, the step
edge barrier model used by SK does not.

Our generic model with a reflection barrier is a unique
example in which a coarse-grained description of growth in
terms of the single-valued height functionh(x,t) becomes
inadequate and a more complete theory is needed to capture
the lateral roughness observed. The nonlocal flamelike pat-
tern formation we find is manifestly a nonconservative
growth phenomenon, totally distinct in nature from the vari-
ous diffusion bias induced SOS growth instabilities~which
are all local phenomena! @2–6# and is qualitatively different
from the SK results@8#. For nonconservative nonequilibrium
growth in the presence of a step-edge diffusion bias, new
nonlocal methods must be developed to characterize the full
morphological features of the resulting crystals. The most
obvious and simplest extension of current formalism is to
consider the perimeter of the crystal, given as a lines(t) in
two dimensions, rather than the heighth(x,t). Due to the
incident flux, this stringlike object would be elastic as its
length must be nonconserved, and subject to particular equa-

FIG. 4. Crystal morphologies withp51.0 ~top! and p51024

~bottom! atT5625 withL5500 after 10 000 layers of growth. The
vertical scale has been shifted for clarity. Note the flamelike char-
acter due to the diffusion bias induced destabilization of the flat
vertical surfaces.

FIG. 5. Crystal morphology forp51024 at T5600 with
L51000 after 10 000 layers of growth. The vertical scale has been
shifted for clarity. The flamelike character persists at this lower
temperature.
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tions of motion whose elucidation remains a topic for future
research. One interesting avenue to investigate this novel
type of pattern formation, which manifestly requires going
beyond the single-valued height description, may be the re-
cently introduced ‘‘reparametrization invariance’’@21# idea
in stochastic continuum growth equations. To the extent one
insists upon a single-valued coarse-grained description
where the surface is defined by the height maxima, the KPZ
equation continues to describe asymptotic nonconservative
growth, even with a strong destabilizing diffusion bias.
While both our generic model and that of SK contain all the
continuum elements of the noisy KS equation, it appears that

the shot noise plays an important role in bringing about a
very rapid renormalization of then2,0 instability and the
consequent emergence of the statistical scale invariance as-
sociated with KPZ universality. For very strong biases~e.g.,
p50.0001), growth in the KPZ regime is essentially inde-
pendent of temperature although intricate flamelike mor-
phologies develop at the growth front, suggesting other non-
KPZ ordering phenomena are present. A theoretical
understanding of this new pattern formation at the growth
front must await further investigation.
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